Conservative high order positivity-preserving discontinuous Galerkin methods for linear hyperbolic and radiative transfer equations

نویسندگان

  • Dan Ling
  • Juan Cheng
  • Chi-Wang Shu
چکیده

We further investigate the high order positivity-preserving discontinuous Galerkin (DG) methods for linear hyperbolic and radiative transfer equations developed in [14]. The DG methods in [14] can maintain positivity and high order accuracy, but they rely both on the scaling limiter in [15] and a rotational limiter, the latter may alter cell averages of the unmodulated DG scheme, thereby affecting conservation. Even though a Lax-Wendroff type theorem is proved in [14], guaranteeing convergence to weak solutions with correct shock speed when such rotational limiter is applied, it would still be desirable if a conservative DG method without changing the cell averages can be obtained which has both high order accuracy and positivity-preserving capability. In this paper, we develop and analyze such a DG method for both linear hyperbolic equations and radiative transfer equations. In the one-dimensional case, the method uses traditional DG space P k of piecewise polynomials of degree at most k. A key result is proved that the unmodulated DG solver in this case can maintain positivity of the cell average if the inflow boundary value and the source term are both positive, therefore the positivity-preserving framework in [15] can be used to obtain a high order conservative positivity-preserving DG scheme. Unfortunately, in twodimensions this is no longer the case. We show that the unmodulated DG solver based either on P k or Q spaces (piecewise k-th degree polynomials or piecewise tensor-product k-th degree polynomials) could generate negative cell averages. We augment the DG space with additional functions so that the positivity of cell averages from the unmodulated DG solver can be restored, thereby leading to high order conservative positivity-preserving DG scheme based on these augmented DG spaces following the framework in [15]. Computational results are provided to demonstrate the good performance of our DG schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Positivity-Preserving Discontinuous Galerkin Methods for Radiative Transfer Equations

The positivity-preserving property is an important and challenging issue for the numerical solution of radiative transfer equations. In the past few decades, different numerical techniques have been proposed to guarantee positivity of the radiative intensity in several schemes, however it is difficult to maintain both high order accuracy and positivity. The discontinuous Galerkin (DG) finite el...

متن کامل

Positivity-preserving DG and central DG methods for ideal MHD equations

Ideal MHD equations arise in many applications such as astrophysical plasmas and space physics, and they consist of a system of nonlinear hyperbolic conservation laws. The exact density ρ and pressure p should be non-negative. Numerically, such positivity property is not always satisfied by approximated solutions. One can encounter this when simulating problems with low density, high Mach numbe...

متن کامل

Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations

We develop a high-order positivity-preserving discontinuous Galerkin (DG) scheme for linear Vlasov-Boltzmann transport equations (Vlasov-BTE) under the action of quadratically confined electrostatic potentials. The solutions of such BTEs are positive probability distribution functions and it is very challenging to have a mass-conservative, high-order accurate scheme that preserves positivity of...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes

We construct uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for Euler equations of compressible gas dynamics. The same framework also applies to high order accurate finite volume (e.g. essentially nonoscillatory (ENO) or weighted ENO (WENO)) schemes. Motivated by [18, 24], a general framework, for arbitrary order of accuracy, ...

متن کامل

Maximum - Principle - Satisfying and 1 Positivity - Preserving High Order Central Dg 2 Methods for Hyperbolic Conservation Laws

Maximum principle or positivity-preserving property holds for many mathematical 5 models. When the models are approximated numerically, it is preferred that these important prop6 erties can be preserved by numerical discretizations for the robustness and the physical relevance of 7 the approximate solutions. In this paper, we investigate such discretizations of high order accuracy 8 within the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017